「座標変換と回転」の版間の差分
提供: tknotebook
								
												
				 (→座標軸の方向ベクトルの変換)  | 
				 (→座標軸の方向ベクトルの変換)  | 
				||
| 22行: | 22行: | ||
==座標軸の方向ベクトルの変換==  | ==座標軸の方向ベクトルの変換==  | ||
| − | + | 次に原点が一致する2つの異なるデカルト座標系の座標変換を考えます。  | |
[[ファイル:座標軸の方向ベクトルの変換.png]]  | [[ファイル:座標軸の方向ベクトルの変換.png]]  | ||
| − | 図には xyz座標系と x'y'z' 座標系の2つが示されているが <math>{\boldsymbol e_1}</math>, <math>{\boldsymbol e_2}</math>, <math>{\boldsymbol e_3}</math> が xyz座標系の座標軸の方向ベクトルを、<math>{\boldsymbol e^'_1}</math>, <math>{\boldsymbol e^'_2}</math>, <math>{\boldsymbol e^'_3}</math> が x'y'z'  | + | 図には xyz座標系と x'y'z' 座標系の2つが示されているが <math>{\boldsymbol e_1}</math>, <math>{\boldsymbol e_2}</math>, <math>{\boldsymbol e_3}</math> が xyz座標系の座標軸の方向ベクトルを、<math>{\boldsymbol e^'_1}</math>, <math>{\boldsymbol e^'_2}</math>, <math>{\boldsymbol e^'_3}</math> が x'y'z'座標系の座標軸の方向ベクトルを表しています。  | 
{{eqn|<math>{\boldsymbol e^'_1}</math>|2}}  | {{eqn|<math>{\boldsymbol e^'_1}</math>|2}}  | ||
2015年6月9日 (火) 07:37時点における版
座標系の定義
座標というのは空間上に定められた目盛のというか定規のようなものと考えてよいでしょう。ここではデカルト座標(直交座標)に話を絞ります。
デカルト座標では基準となる原点と、X, Y, Z方向を下の図のように定めます。
図の点Oが座標の原点を表します。
, 
, 
は、x軸, y軸, z軸の方向を表す方向ベクトル(単位ベクトル)で、デカルト座標なので互いに直交しています。
は、
が回転して
に向くとき、その回転に対して右ネジの方向に定めます。これを「右手系」といいます・
デカルト座標上での点の位置 
 の座標値(成分)は
 
 | 
( 1 ) | 
と定義します。つまり、
 という関係になります。
え!、点O や、
, 
, 
 はどういう座標系を使って定義するんだって? それは神様が定義した座標があるとしましょう。だって、座標系の定義に座標系が必要だと、話が永遠に終わらないからです(^^;
座標軸の方向ベクトルの変換
次に原点が一致する2つの異なるデカルト座標系の座標変換を考えます。
図には xyz座標系と x'y'z' 座標系の2つが示されているが 
, 
, 
 が xyz座標系の座標軸の方向ベクトルを、
, 
, 
 が x'y'z'座標系の座標軸の方向ベクトルを表しています。
 
 | 
( 2 ) | 

