指定方向のローレンツ変換
提供: tknotebook
ローレンツ変換は、空間1次元、時間1次元の2次元時空で扱うことが多いですが、
空間3次元、時間一次元の4次元時空ではどうなるかを探って見ました。
準備
まず座標系ですが、 座標系と 座標系の2個の慣性系を用意します。 と が時間軸、 と が 空間軸です。
座標系と 座標系は通常原点は一致しませんが、 各軸の向きは同じとします。 また、 の時、 座標系と 座標系の原点が重なるとします。
つまり、 座標系と 座標系の原点は重なるのです。
の原点の 座標系での速度を とします。
なお、座標系の単位は幾何学単位系を採用します(時間の単位は m, 速度の単位は無次元量で光速との比)。
x軸方向のローレンツ変換
美しいローレンツ変換 で紹介したローレンツ変換は のケースで、 4次元でちゃんと書くと
( 1 ) |
となります。これを任意方向の に拡張してみましょう。
の方向が任意のローレンツ変換
時刻の同時性のずれは、 方向の位置成分に比例するので、
、 の方向ベクトルを とすると
( 2 ) |
位置は 方向のみローレンツ短縮が起きるので
位置 の 方向成分が
、
位置の に対して垂直な成分が
であることを考慮すると、
は
( 3 ) |
これを行列に直すと、 、 を 3x3 の単位行列とすると
( 4 ) |
に すると、式(4)は式(1)に一致するので正しそうです。